Skip to content

YOLOv8

New in version 1.1

Overviews

YOLO stands for You Only Look Once

APIs

Model

Bases: BaseModel

build_model(model_path=None)

Load Yolo model for retraining Args: model_path(str): Custom path for loading weight. Default: model_path="model/yolov8{version}.pt"

Returns:

Name Type Description
model YOLO

created YOLO model

fit()

Parameters:

Name Type Description Default
data(str)

input data.yaml

required
epochs(int)

number of epochs

required
imgsz(int)

Image size (640)

required
device

0,1,2,3 for GPU or device:cpu

required
batch_size

a number of samples processed before the model is updated

required

Returns:

Name Type Description
model_path str

default "runs/detect/train/weights/best.pt"

get_transform()

Get image data transform function for preprocessing

Returns:

Name Type Description
transform func

transform function. This function will take input as image path and output - raw_image: image numpy mat - image_transform: image tensor (pytorch) Example: torchvision.transforms.transforms: data transforms function

predict(source=None)

Parameters:

Name Type Description Default
source(str)

file or folder for testing

required

Returns: folder_path(str): runs/detect/predict

process_predictions(net_output, raw_image_path, raw_image_mat, image_transform, save_image_path)

post process the output of the net

Parameters:

Name Type Description Default
net_output _type_

output of detection net

required
raw_image_path str

raw image path

required

Returns:

Type Description

save_image_path inform that the annotation image has been written successfully in the same directory contain the annotation image, the annotation text file will be named "annotated_image.txt" each line format (yolo): class, x, y, w, h, confidence, class_name

validate()

Returns: metrics(list): Validated results